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Abstract. The Leehw-Pines-like intermediate method is &opted to study the p r o p e ~ c s  
of a slow-moving optical polaron in an N-dimensional polar crystal at a finite temperature. 
The analytical expressions for the intemal energy and effective mass of the polaron for a 
celwin momentum Kp are derived using the approximation that the thermophonon number is 
independent of the wavevector. The numerical results obtained by considering the dependence of 
the thermophonon number on the wavevector are also obtained. It is shown that the temperature 
effect of the polaron diminishes with increasing dimensionality. 

1. Introduction 

The dimensional dependence of the polaron properties has attracted considerable interest 
during the last few years. Peeters et al [I] have studied the problem of the N-dimensional 
polaron with the path integral approach and found that the polaron effects diminish 
drastically with increasing dimensionality. Also, many workers [2-6] have discussed 
theoretically the polaron ground-state energy, effective mass, mobility, etc. 

Chatterjee [7] has discussed the N-dimensional bound polaron with a variational method 
and path integral formulation. We [8] have studied the internal excitation states of the N- 
dimensional polaron with the improved Huybrechts [9] linear combination method. The 
results also show that the polaron effects become weaker with increasing dimensionality. 

Most work in this field, to our knowledge, has been carried out at the zero-temperature 
limit. The temperature dependence of the polaron effect on the dimensionality is very 
interesting because experiments are performed at a non-zero temperature. This gives 
us the impetus to study the properties of an N-dimensional optical polaron at a finite 
temperature. In this paper, an improved Lee-Low-Pines (LLP) [IO] intermediatecoupling 
theory is adopted from the work of Yokota (1 11, who studied the 3D polaron problem in the 
1950s. The analytical expressions for the internal energy and effective mass of the polaron 
are derived by using the approximation that the thermophonon number is independent of 
the phonon wavevector. The numerical results are also computed taking into account the 
fact that the thermophonon number is dependent on the wavevector. It is shown that the 
polaron has an increasing temperature effect with decreasing dimensionality. 

2. The variational method 

The Hamiltonian of an electron-phonon interaction system in an N-dimensional polar crystal 
can be. written as 111 

H = i p 2  + x6:g+bq + c[Sq exp(-iq. r)b, + HC] 
'I P 

0953-8984/93/336055+6$07.50 @ 1993 1OP Publishing LLd 6055 



6056 Shiliang Ban et a1 

where 

eq = i [ { r [ ? ( ~  2 - I ) ] ~ ~ - ~ / ~ ~ ( N - ~ ) ~ ~ / v ~ ~ - ~ ] ~ ~ ~ / ~ ,  (2) 
In equation ( I ) ,  p and T are the N-dimensional momentum and coordinate of an electron, 
respectively. b: and b, are the creation and annihilation operators respectively of a 
longitudinal optical phonon with wavevector q. (I is the dimensionless electron-phonon 
coupling constant. For convenience, we have chosen the natural units fi = m = w = 1, 
where h ,  m and w are the Planck constant, the band mass of the electron and the 
dispersionless frequency of the phonons, respectively. V is  the volume of the N-dimensional 
polar crystal. r[i(N - I)]  denotes the gamma function. 

The non-interaction eigenstates of the electron-phonon system can be chosen as [ I l ,  121 

with 

SI = -i b;b,q . r and s2 = - e( fqb,+ - f,*b,) 
a 9 

In equation (3). IO) is the vacuum phonon state. {n(q) )  = n(ql) ,  n(qz) ,  . . . , n(qi), . . . 
are the thermophonon numbers corresponding to different wavevectors q. P is the total 
momentum of the system and f9 the variational parameter. exp(sl)exp(sz) exp(-s,) = 
exp(- C,[f9bq exp(iq . T )  - f,*b: exp(-iq . r)]] is the operator of the displacement 
oscillator. If we adopt the orthogonal and complete set of the non-interaction eigenstates (3), 
the partition function of the system can be determined using Peierls' variational principle: 

z = Tr [exp (-:)I > F e x p  (- y) (4) 

where In) denotes the eigenstate of the non-interaction system. The unit of T is h u l k ,  
where k is the Boltzmann constant. 

The polaron energy corresponding to the eigenstate is given by 

H P .  In(q)H = (P. [WJIHIP, ln(q)J) 

where E, qn(q) is  the^ momentum-summation of the phonons with different frequencies 
emitted by the electron. The variational parameter f9 should be determined by the 
maximization of the partition function because the free energy of the system has a minimum 
at the equilibrium state. 

Since the total momentum p - E, b:b,q of the system commutes with the Hamiltonian 
(1). it is a constant of motion. In the present representation, the total momentum becomes 
a C-number which has been replaced by its eigenvalue P .  We are now interested in the 
properties of a single polaron with a given momentum. The corresponding partition function 
can be obtained by fixing the polaron momentum Kp = P -  '&n(q)q as Yokota [ I l l  did: 
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where 

The free energy of the system can he written as 

Putting 

n(q) = l/lexp[(l +q21fql2)/T1 - 1) 
a d  

V K p  = Cq1f4I2 
9 

from minimization of the free energy with respect to f:, we obtain 

f p  = -Cq/ ( l -  (1 - ? ) q - K p  + $[2n(q) + 11q21. (10) 
It should be pointed out that n(q)  deviates from the Bose distribution by q21fq12 which is 
caused by the interaction between the electron and phonons. Inserting equation (10) into 
equation (9) and multiplying both sides hy Kp, we derive 

in which the expansion of the denominator to the second order of small Kp has been 
introduced. The summation over q in (11) can be reduced to the following integral: 

V - /. . . / d q  

This can be solved to give 

q = A / ( I  t A ) ,  



6058 Shiliang Barr et a1 

The internal energy of the polaron for a certain momentum K, is given by 

In equation (14), the direct contribution of the thermophonon to the energy has been 
omitted, which increases the polaron self-energy and destabilizes the polaron. At zero 
temperature, E ( N .  T )  becomes the polaron ground-state energy E ( N ,  0). In section 3, we 
shall make a comparison between these two energies to obtain the temperature effect of the 
polaron. Repeating the process for obtaining equation (12). we have 

in which the first term is the self-energy of the polaron. From the second term in equation 
(15), the effective mass of the polaron can be written as 

3. Discussion and numerical computation 

In equations (15) and (16), if we take the thermophonon number approximately as the Bose 
distribution 

n(q)  -+ no = I/(exp(l/T) - 1)  (17) 
then the polaron ground-state energy is given by 

E s ( N ,  T )  = - { f i r [ i ( N  - 1)]/2r(;N)][o1/(2no + l)’’’] + [1/2mg(N. T)]Kp’. 

The polaron effective mass is reduced to 

(18) 

m g ( N ,  T )  = 1 + {.Jjirt;(N - I ) I / ~ N T ( ~ N ) J [ ~ / ( z ~ o +  I)’’~]. (19) 
For the general situation, the thermophonon number can be given by self-consistent 

computation of equations (8) and (10). Thereby the polaron energy and its effective mass 
are obtained from equations (15) and (16). We have computed the numerical results within 
the intermediate-coupling region for different dimensions. Figures 1-4 show the numerical 
results corresponding to the polaron momentum K, = 0.01 and the temperature T = 100 K. 
To perform the numerical computation of the exponential factor in equation (17). we choose 
the frequency o of the optical phonon to be 5 x IOr3  s-’. The dimensionless length of the 
crystal adopted in figures 1-3 is 5000’/2. 

The difference E ( N ,  T )  - E ( N ,  0) between the polaron energies at a finite temperature 
and at zero temperature as a function~of the electron-phonon coupling constant (Y is given 
in figure 1.  The following points are shown. 



T dependence of N-dimensional polaron 6059 

1.03 

h 

9 

E 

c 
i 097 

z 1.00 
v 

1 

E 
U 

0.91 

CY 
L 

1 2 3 4 5  
a 

Figure 1. The difference E(N. T) - E(N,O) between 
the polaron energy at a finite temperature and that at 
zero temperature as a function of the electron-phonon 
coupling constant (1. 

Figure 2. The ratio m*(N,  T)/m*(N,O) of the 
polaron effective mass at a finite temperature to that at 
zero temperature as a function of the electron-phonon 
coupling constant U .  
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Figure 3. The ratio n(q)/no of the [her- Figure 4. 
mophonon number Obtained by numerical 
computation to that obtained by analytical 
approximation as a function of the waveveu 
tor magnitude 9.  

Displacement amplitude ntio fq / fq(no)  of the 
thermophonon number obtained by numerical computation to that 
obtained from the analytical expression as a function of the crystal 
volume V. 

(I) The polaron energy at a finite temperature is higher than that at zero temperature. 
This is physically obvious because the thermophonons cause the self-trapping of the polaron 
to become 'shallow'. 

(2) The temperature effect of the polaron diminishes with decreasing electron-phonon 
coupling constant a. 

(3) The difference between the polaron energies at a finite temperature and at zero 
temperature decreases with increasing dimensionality. This indicates that the temperature 
effect of the polaron energy with higher dimensions is weaker. 

Figure 2 gives the relation between the ratio m"(N, T ) / m * ( N ,  0) of the polaron effective 
mass at a finite temperature to that at zero temperature as a function of the electron-phonon 
coupling constant a. It can be seen that the ratio is much nearer to unity for higher 
dimensions. The temperature effect on the polaron effective mass also becomes increasingly 
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weaker with increasing dimensionality. It is shown from the previous results that the 
temperature effect of the polaron drastically diminishes with increasing dimensionality. 

In equation (lo), the displacement amplitude fq is proportional to V’/*, We have 
computed the thermophonon number n(q) and f, for a dimensionless length of the crystal 
of 50O1/* when N = 2,3 to compare the analytical expressions (18) and (19) with the 
exact numerical results. Figure 3 gives the ratio of the numerically computed thermophonon 
number n(q)  to that of the Bose approximation no as a function of the wavevector magnitude 
q for N = 2,3. The deviation of n(q) from no can be omitted for lower q. although 
a minimum occurs at a certain q ,  namely qc (for N = 2 and 3, qc N 0.8 and 
respectively). 

The ratio of the thermophonon displacement amplitude fq (the numerical results) to 
&(no) (given by the Bose approximation) as a function of the volume of the crystal is 
shown in figure 4, On increase in the crystal volume, the deviation decreases so rapidly 
that it  can be neglected at large V .  The size range of the crystal is usually much larger 
than that of the polaron; therefore it is suitable to describe the polaron properties with the 
simple expressions (equations (18) and (19)) derived using the Bose approximation. 

Comparing E B ( N ,  T) and m k ( N ,  T) with the comesponding values for N = 3, at a 
finite temperature, we obtain the same scaling relations as derived by Si1 and Chatterjee [5]  
at zero temperature: 

EB N D  - - 7 I N E ~ D  ( ( ~ 3 f i r [ f ( N  - I ) ] / Z N T ( ~ N ) ]  

and 
m*NO = m g 3 D ( ~ 3 f i r [ h ( N  - i ) p ~ r ( ; ~ ) ]  

where EiD and m i N D  represent the N-dimensional polaron energy and effective mass, 
and Ei’ and m;3D are the corresponding values in three dimensions. The subscript B 
indicates that the Bose distribution approximation has been adopted. It can be concluded 
from equations ( I  8) and (19) that the temperature effect of the polaron drastically diminishes 
on increase in the dimensionality. 
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